江西省景德镇市 中考第二次质量检测数学试卷及答案

杳然 分享 2025-7-5 下载文档

精品资料

如图3,在直线GA上取点P,使得∠EPA=?, 作FQ∥EP交直线GA与Q.

∵∠EAP+∠BAG=180°-?,

∠ABG+∠BAG=180°-?,

∴∠EAP=∠ABG.又∠EPA=∠AGB, ∴△APE∽△BGA,

由于∠FQA=∠FAC=∠AGC=180°-?, 同理可得△AQF∽△CGA.

EPAE1FQAF1??,??, ∴

AGABkAGACk∴EP=FQ. ∵EP∥FQ.

易证△EPH≌△FQH,从而有HE=HF. ●应用推广

如图4a,由前面条件及结论易得H为EF中点,AE=AF=2, 且∠EAF=360°-(∠EAB+∠FAC)-∠BAC=60°, ∴△AEF为正三角形.

又H为EF中点,如图4b,

∠1+∠FHN=120°,∠2+∠FHN=120°, ∴∠1=∠2.又∠E=∠F,∴△MEH∽△HFN.

图3

图4a

HMEH?. NHFNHMFH?,且∠MHN=∠F=60°, HNFN图4b

又EH=FH,∴

∴△MHN∽△HFN.

∴△MHN∽△HFN∽△MEH. 不难发现线段MN长度的最小值

当M、N同时为AE、AF中点(即MN∥EF)时取到,MNmin?1.


江西省景德镇市 中考第二次质量检测数学试卷及答案.doc 将本文的Word文档下载到电脑
搜索更多关于: 江西省景德镇市 中考第二次质量检测数学试卷及答案 的文档
相关推荐
相关阅读